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The calculation of the principal mean-flow characteristics and the
distribution of the fluctuating quantities are examined for the case of

turbulent flows of nonlinear Stokes fluids with a given characteristic
equation.

The most general form of the characteristic equa-
tion for fluidity may be written as [1-3}

T = ady; + ﬁéij + ’Yétlze.kjs‘ (1)

where a, 8, and v are functions of the three invariants

of the strain-rate tensor and the thermodynamic state.

The deformation behavior of any medium must
satisfy certain conditions, A medium whose charac-
teristic equation satisfies the Stokes postulates is
usually called a Stokes fluid. Stokes fluids do not
exhibit "memory." For these fluids Eq. (1) has the
form

T =(—p+a*)6;+Be;+ Y eues, (2)

where p is the thermodynamic pressure, and o* is
a certain function of the invariants of the strain-rate
tensor, which in accordance with Stokes' fourth
postulate [3] vanishes at ejj = 0. In the case of in-
compressible viscous fluids p is indeterminate and,
consequently, any definition of pressure is valid that
does not contradict Stokes' fourth postulate. Usually,
p is assumed to coincide [4] with the mean pressure
p = —I47/3, with p and p differing significantly only in
such rapidly developing processes as, for example,
explosions. For the case of incompressible fluids
Eq. (2) gives the relation for the pressure and mean
pressure

(p—3p) = Yéikéki: (3)

whence it is clear that p =p if and only if y =0,
Thus, by adopting the hypothesis that p =p, we
confine ourselves to the case of a quasi-linear
relation between the stress tensor and the strain-rate
tensor, The coefficient 8 for an incompressible fluid
can be represented in the form of a power series
in the second invariant

B=Po+Bilot+Belot... . (4)

Taking the first two terms of the expansion only
(thereby limiting the region of shear values consid-
ered) and using customary notation,

B=np—pols (5)

Thus, the characteristic equation, which we will
continue to use and whose region of applicability can
be determined only by experiment, becomes

Ty =—p&; -+ —p ey, (6)

where the dimensions of y are M/LT and of u, are
MT/L,

" Equation (6), which describes the flow of pseudo-
plastic and dilatant fluids, was used in [5]to investigate
stability.

To close the system of Reynolds equations, as dis~
tinct from the phenomenological Prandtl-Boussinesq
theory, we include the equations for the variation
of the Reynolds stresses. This permits a detailed
examination of the fluctuating-motion characteristics
and its effect onthe mean motion, We use the Reynolds
stress equations, reduced to second moment bal-
ance equations by introducing certain approximations
based on Kolmogorov's ideas [7]. This or a similar
method was used successfully to calculate the char-
acteristics of turbulent flows in pipes and channels,*
boundary layers [17], two-phase flows [12], and mag-
netohydrodynamic flows [13-18], Its great advantage
is that it can readily be extended to the calculation
of the characteristics of turbulent flows when the
turbulence is influenced by various external factors.

The method of obtaining the Reynolds stress equa-
tions is well known [8], Using Eq. (6) we obtain the
following system of equations in a Cartesian coordi-
nate system**
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*These studies are listed in the monograph by

Monin and Yaglom [8], and in papers by Rotta [9]
and Levin [10, 11], _
**Following Lumley [6], we assume that I, = I,
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Equations (7) and the corresponding equations
for a linear fluid [10] differ in terms containing the
second viscosity .

Here, the role of pressure is played by the non-
isotropic shear-dependent function px. When i =j we
obtain the balance equations for the fluctuation energy
per unit volume in the i direction
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5
__‘(H H212)6_xa‘ —uyf; = 0. (8)

The physical significance of the terms remains as
before [8], but the dissipative term has a more com-
plicated form.

As before [9,10], we assume the approximate
validity of the Kolmogorov hypothesis [7], i.e., the
dissipation per unit mass of fluid and other charac-
teristic quantities depend only on the turbulent energy
E and the turbulence scale [.*

We make the following semiempirical approxima-
tions for the dissipative term and for the second
moments "pressure-spatial velocity derivatives" [9]
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Constants ¢ and c; are obtained from Laufer's exper-
iments [17], while constant k must be determined
experimentally for fluids with different values of po,
As Laufer's experiments show, turbulent diffusion
of pulsation energy is important only near the axis,
i.e., in a flow region of secondary importance for
many problems owing to the fullness of the turbulent
profile, Disregarding this flow region, we neglect the
corresponding terms in Egs. (7). After substituting
relations (9) and (10) into Egs. (7), we obtain a system
of second-moment balance equations (without taking

*The scale problem is not considered in this paper.
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external forces into account)
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together with the Reynolds equations, which in our
case have the form
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This system can be used to determine the principal
mean and fluctuation characteristics of turbulent pipe
flows. It should be kept in mind that system (11)—(12)
is closed with respect tothe first and second moments,
but the problem of calculating the flow characteristics
as functions of the coordinates can be completely
solved only if the scale of turbulence I, which, gener-
ally speaking, is a function of the principal invariants
of the strain rate tensor, is specified.

A special feature of this method (using the equa-
tions for the change of Reynolds stresses to close the
gsystem of Reynolds equations) as compared with the
method based onthe Prandtl-Boussinesq hypothesis is
that much more information on the nature of the flue-
tuation component canbe obtained since the fluctuation
characteristics of the flow are calculated directly.
Moreover, it is possible to make fuller allowance for
the effect of the fluctuating motion on the mean flow
characteristics. Thus, for example, in the case of
quasi-plane turbulent pipe flow, by means of the
Prandtl-Boussinesq hypothesis we can approximate
only the shear stresses —uv = [!|dU/dy|dU/dy, without
either obtaining information on the normal stresses
or a quantitative estimate of their direct effect on the
integral characteristics, We can also calculate com-
pletely the single-point second moments uv, uw, vw,
#%, 0%, @, and the fluctuation energy E and show their
effect on the mean-flow characteristics. From Egs.
(11) and (12), neglecting the effect of viscous diffu-
sion on energy transfer and using the dimensionless
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quantities R;,* Ry, R, , and N, we obtain the following
equations for the principal fluctuation characteristics:

uw = vw =0; (13)
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From Eq. (16) the following relation is obtained
for the turbulent and molecular transfer coefficients

e —uw _R% 2
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From Egs. (16), (17);, and (14) the single-point
correlation coefficient for the horizontal and vertical

*Ry = (1¥v)(dU/dy) is the local Reynolds number
first introduced by L. G. Loitsyanskii [18], Ry = Ry /12
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velocity fluctuations is found to be
R— = ____E .

Y Yy e

In our case, correct to RZE the fluctuation energy

balance equation can be expressed in the following
dimensionless form:

(20)
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The first integral of the mean-motion equation
(12), written in terms of dimensionless complexes,
reduces to
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With the numerical solution of Eq. (21) for given
empirical constants Rg = Rg(R,N) can be determined.
Using this and specifying [, from (22) we can find
the local Reynolds number Rj = Rj(l,N) for given
Rx. Knowing R; and Rg, from (14)-(20) we find the
unknown fluctuation characteristics and also, with
a view to determining the local Reynolds number,
we find the mean velocity distribution by integrating
the equation

dau v

Fre 7R (23)
Considering only the turbulent core of the flow,

where RE and Rj are large, at small Reynolds num-

bers we neglect the viscous dissipation of fluctuation

energy as compared with the Kolmogorov dissipa-

tion, i.e., terms containing c;. Here, we assume that
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the dissipation associated with shear viscosity at
least does not exceed the dissipation associated with
ordinary viscosity.

We have to evaluate the coefficient k. To simplify
the calculations, we take the Prandtl mixing length
as the scale I, using it only to estimate k. Then the
expression for the turbulent friction with the assumed
constraints

d2 .2

2 r
oy . = N
— 2lazu dl ¢ |+kRE dg
dy dy%?l 2k
| 3\¢

kRg dgf
9 -3
3 2
2 42 -2 ?(k—c)
X 1+_N~d—2‘ ! 2 7 d2 )
Re a1+ 2 NLR,
k E dyz

should coincide at N = 0 with the Prandtl formula,
whence follows the condition that must be satisfied by
the coefficients k and c at I = ny:

2 [k K .
[-5(7_1” -t (24)

We will consider the motion of a fluid for which
N/RE « 1. In this case, to calculate the unknown
characteristics of the mean and fluctuating motion
we employ the method, of successive approximations.

In the zero-order approximation (with N = 0) the
characteristics coincide with those obtained by Levin
[10] for a linear plane-channel flow. Then, confining
ourselves to the first powers of the parameter N,
in first approximation the unknown characteristics
are given by
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- (%)0{1 _F(M)%[ks—n) (25+ 2—?)]}

1
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x{1+F(M)i6{(3';n)(25+2§”}, (25)

where F(M) = (M/R&)Nc /Y kn)[1/n*(L = /%, M =
= (ky/1%) Ty, n=yv4/v is a universal coordinate,

In first approximation, Eqs. (21) and (22) have the
form

RE=RE,{1+F(M)—:3—[<3—n)(11 —2—5)];

R,=Rz“{1+F(M)%[(3—n) (25+27k)]]- (26)

The calculation process can be extended to any
number of successive approximations, We limit our-
selves to the first approximation, Calculated curves
showing the kinetic energy of the fluctuating com-
ponents and the velocity defect in the flow core are
presented in Figs. 1 and 2. From these figures it is
clear that the over-all viscosity effect reduces either
tothe additional dissipation (v > 0) or tothe additional
generation (vy < 0) of pulsation energy. Accordingly,
the mean velocity profile is either laminarized or
becomes fuller, These effects are manifested strongly
in the lower part of the turbulent core and extremely
weakly in the central region (at least at the calculated
values of the parameter M/Ri).

For very small 7 the theoretical results presented
should be treated cautiously, since at the values of
M/RS, in question the first approximation for calcu-
lating the characteristics is clearly inadequate near
the walls and, accordingly, the parts of the curves
near the walls are merely illustrative.

NOTATION

Tij and éij arethe stress tensor and the strain-rate
tensor; Iis the symbol common to the_three invari-
ants of éij; 6ij is the Kronecker delta; U is the mean
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velocity; u, v, and w are the velocity fluctuation com-~
ponents; x; are the Cartesian coordinates; p, t, and Fj
are the density, time, and body force components,
respectively; k, ¢, and ¢; are the empirical constants
determined from Laufer's experiments [17]; N =

= sz/a“, where a is the half~width of the channel;
Tyw is the wall friction; Rg = L(E)/%v is the energy
Reynolds number; Ry = v4a/v is the dynamic Reynolds
number,
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